Search results for "Fluorescence imaging"
showing 10 items of 16 documents
Defense Priming in Nicotiana tabacum Accelerates and Amplifies ‘New’ C/N Fluxes in Key Amino Acid Biosynthetic Pathways
2020
: In the struggle to survive herbivory by leaf-feeding insects, plants employ multiple strategies to defend themselves. One mechanism by which plants increase resistance is by intensifying their responsiveness in the production of certain defense agents to create a rapid response. Known as defense priming, this action can accelerate and amplify responses of metabolic pathways, providing plants with long-lasting resistance, especially when faced with waves of attack. In the work presented, short-lived radiotracers of carbon administered as 11CO2 and nitrogen administered as 13NH3 were applied in Nicotiana tabacum, to examine the temporal changes in &lsquo
An Intronic cis-Regulatory Element Is Crucial for the Alpha Tubulin Pl-Tuba1a Gene Activation in the Ciliary Band and Animal Pole Neurogenic Domains …
2017
In sea urchin development, structures derived from neurogenic territory control the swimming and feeding responses of the pluteus as well as the process of metamorphosis. We have previously isolated an alpha tubulin family member of Paracentrotus lividus (Pl-Tuba1a, formerly known as Pl-Talpha2) that is specifically expressed in the ciliary band and animal pole neurogenic domains of the sea urchin embryo. In order to identify cis-regulatory elements controlling its spatio-temporal expression, we conducted gene transfer experiments, transgene deletions and site specific mutagenesis. Thus, a genomic region of about 2.6 Kb of Pl-Tuba1a, containing four Interspecifically Conserved Regions (ICRs…
Visualizing the spatiotemporal map of Rac activation in bovine aortic endothelial cells under laminar and disturbed flows.
2017
Disturbed flow can eliminate the alignment of endothelial cells in the direction of laminar flow, and significantly impacts on atherosclerosis in collateral arteries near the bifurcation and high curvature regions. While shear stress induced Rac polarity has been shown to play crucial roles in cell polarity and migration, little is known about the spatiotemporal map of Rac under disturbed flow, and the mechanism of flow-induced cell polarity still needs to be elucidated. In this paper, disturbed flow or laminar flow with 15 dyn/cm2 of average shear stress was applied on bovine aortic endothelial cells (BAECs) for 30 minutes. A genetically-encoded PAK-PBD-GFP reporter was transfected into BA…
Generation of an inducible RPE-specific Cre transgenic-mouse line.
2018
The retinal pigment epithelium (RPE) is an epithelial monolayer in the back of the vertebrate eye. RPE dysfunction is associated with retinal degeneration and blindness. In order to fully understand how dysregulation affects visual function, RPE-specific gene knockouts are indispensable. Since the currently available RPE-specific Cre recombinases show lack of specificity or poor recombination, we sought to generate an alternative. We generated a tamoxifen-inducible RPE-specific Cre transgenic mouse line under transcriptional control of an RPE-specific Tyrosinase enhancer. We characterized the Cre-mediated recombinant expression by crossing our RPE-Tyrosinase-CreErT2 mouse line with the tdTo…
Quantitative Analysis of Dynamic Association in Live Biological Fluorescent Samples
2014
Determining vesicle localization and association in live microscopy may be challenging due to non-simultaneous imaging of rapidly moving objects with two excitation channels. Besides errors due to movement of objects, imaging may also introduce shifting between the image channels, and traditional colocalization methods cannot handle such situations. Our approach to quantifying the association between tagged proteins is to use an object-based method where the exact match of object locations is not assumed. Point-pattern matching provides a measure of correspondence between two point-sets under various changes between the sets. Thus, it can be used for robust quantitative analysis of vesicle …
Anti-angiogenic drug loaded liposomes: Nanotherapy for early atherosclerotic lesions in mice.
2018
Este artículo se encuentra disponible en la página web de la revista en la siguiente URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190540 También participan en la elaboración de este artículo científico: Aracely Calatayud-Pascual, Alicia López-Castellano, Elena P. Albelda, Enrique García-España, Luis Martí-Bonmatí, Juan C. Frias y M. Teresa Albelda. Fumagillin-loaded liposomes were injected into ApoE-KO mice. The animals were divided into several groups to test the efficacy of this anti-angiogenic drug for early treatment of atherosclerotic lesions. Statistical analysis of the lesions revealed a decrease in the lesion size after 5 weeks of treatment.
A nitroreductase and glutathione responsive nanoplatform for integration of gene delivery and near-infrared fluorescence imaging
2020
A novel platform rationally integrating indocyanine green analogues and an arginine-rich dendritic peptide with both nitroreductase (NTR) and glutathione (GSH) reduction responsive linkers was developed. This multifunctional platform can enable selective and efficient gene delivery and specific turn-on fluorescence imaging in tumors.
Improving extracellular vesicles visualization: From static to motion
2020
AbstractIn the last decade, extracellular vesicles (EVs) have become a hot topic. The findings on EVs content and effects have made them a major field of interest in cancer research. EVs, are able to be internalized through integrins expressed in parental cells, in a tissue specific manner, as a key step of cancer progression and pre-metastatic niche formation. However, this specificity might lead to new opportunities in cancer treatment by using EVs as devices for drug delivery. For future applications of EVs in cancer, improved protocols and methods for EVs isolation and visualization are required. Our group has put efforts on developing a protocol able to track the EVs for in vivo intern…
eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1.
2017
The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-¿ (PKC-¿) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of ß-actin and PKC-¿ from the lamellipodium-like distal (d)-SMAC, promoting PKC-¿ activation. Furthermore, eNOS-derived NO S-nitrosylated ß-…
Evidence for pleural epithelial-mesenchymal transition in murine compensatory lung growth
2017
In many mammals, including rodents and humans, removal of one lung results in the compensatory growth of the remaining lung; however, the mechanism of compensatory lung growth is unknown. Here, we investigated the changes in morphology and phenotype of pleural cells after pneumonectomy. Between days 1 and 3 after pneumonectomy, cells expressing α-smooth muscle actin (SMA), a cytoplasmic marker of myofibroblasts, were significantly increased in the pleura compared to surgical controls (p < .01). Scanning electron microscopy of the pleural surface 3 days post-pneumonectomy demonstrated regions of the pleura with morphologic features consistent with epithelial-mesenchymal transition (EMT); nam…